Domain Independent Model for Product Attribute Extraction from User Reviews using Wikipedia

نویسندگان

  • Sudheer Kovelamudi
  • Sethu Ramalingam
  • Arpit Sood
  • Vasudeva Varma
چکیده

The world of E-commerce is expanding, posing a large arena of products, their descriptions, customer and professional reviews that are pertinent to them. Most of the product attribute extraction techniques in literature work on structured descriptions using several text analysis tools. However, attributes in these descriptions are limited compared to those in customer reviews of a product, where users discuss deeper and more specific attributes. In this paper, we propose a novel supervised domain independent model for product attribute extraction from user reviews. The user generated content contains unstructured and semi-structured text where conventional language grammar dependent tools like parts-of-speech taggers, named entity recognizers, parsers do not perform at expected levels. We used Wikipedia and Web to identify product attributes from customer reviews and achieved F1score of 0.73.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)

As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...

متن کامل

Outclassing Wikipedia in Open-Domain Information Extraction: Weakly-Supervised Acquisition of Attributes over Conceptual Hierarchies

A set of labeled classes of instances is extracted from text and linked into an existing conceptual hierarchy. Besides a significant increase in the coverage of the class labels assigned to individual instances, the resulting resource of labeled classes is more effective than similar data derived from the manually-created Wikipedia, in the task of attribute extraction over conceptual hierarchies.

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

Mining Interesting Trivia for Entities from Wikipedia

TRIVIA is any fact about an entity, which is interesting due to any of the following characteristics − unusualness, uniqueness, unexpectedness or weirdness. Such interesting facts are provided in Did You Know? section at many places. Although trivia are facts of little importance to be known, but we have presented their usage in user engagement purpose. Such fun facts generally spark intrigue a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011